

Performance analysis of GPS+Galileo smartphone raw measurements

Gabriele Pirazzi, Sapienza University of Rome, DICEA
Augusto Mazzoni, Sapienza University of Rome, DICEA
Mattia Crespi, Sapienza University of Rome, DICEA

Agenda

- Objectives
- Access to GNSS Raw Measurements using ANDROID APIs
- Smartphones' Configuration
- Scenarios' description
 - Static, Urban Pedestrian, Gesture, Sub-urban Vehicle and Aircraft.
- Results with
 - Carrier-phase differential approach (static and Kinematic);
 - Carrier-phase variometric approach: VADASE.
- Snapshot of the app MentorAge GNSS
- Conclusion and way ahead

Objectives

- Investigating on the quality of smartphones' GNSS measurements.
- Providing preliminary performance with consolidated positioning algorithms.
- Introducing the variometric approach with VADASE applied to smartphones.
- Identifying solutions and new applications with smartphones' GNSS measurements.
- Provide feedbacks.

Access to GNSS Raw Measurements using ANDROID APIs

Access to GNSS Raw Measurements using ANDROID APIs


```
Selected Public methods
getAccumulatedDeltaRangeMeters()
getCarrierCycles()
getCarrierFrequencyHz()
getCarrierPhase()
getCn0DbHz()
getConstellationType()
getPseudorangeRateMetersPerSecond()
getReceivedSvTimeNanos()
getSnrInDb()
getSvid()
```

Source: developer.android.com

Access to GNSS Raw Measurements using ANDROID APIs

	Android 7 Location - Clock and	Measurements
ANDROID CLASS	FIELD	DESCRIPTION
GNSSClock	TimeNanos	GNSS receiver's internal hardware clock value in nanoseconds
GNSSClock	BiasNanos	Clock's sub-nanosecond bias
GNSSClock	FullBiasNanos	Difference between TimeNanos inside the GPS receiver and the true GPS time since 0000Z, 6 January 1980
GNSSClock	DriftNanosPerSecond	Clock's drift
GNSSClock	$Hardware {\it Clock Discontinuity Count}$	Count of hardware clock discontinuities
GNSSClock	LeapSecond	Leap second associated with the clock's time
GNSSMeasurement	${\it ConstellationType}$	Constellation type
GNSSMeasurement	Svid	Satellite ID
GNSSMeasurement	State	Current state of the GNSS engine
GNSSMeasurement	ReceivedSvTimeNanos	Received GNSS satellite time at the measurement time
GNSSMeasurement	Accumulated Delta Range Meters	Accumulated delta range since the last channel reset
GNSSMeasurement	Cn0DbHz	Carrier-to-noise density
GNSSMeasurement	Time Off set Nanos	Time offset at which the measurement was taken in nanoseconds
GNSSMeasurement	CarrierCycles	Number of full carrier cycles between the satellite and the receiver
GNSSMeasurement	CarrierFrequencyHz	Carrier frequency at which codes and messages are modulated
GNSSMeasurement	PseudorangeRatemetersperSecond	Gets the Pseudorange rate at the timestamp

Smartphones' Configurations

RINEX Example Live data - Static

Scenarios' description

Ref.	Device	Scenario	Туре	Antenna	Duration	GNSS available	Algorithm
T-1			Static	Embedded	5 min	GPS+GAL	- Carrier Phase Differential (Static), Baseline~5Km - Variometric
T-2		P10 Live	Pedestrian	Embedded	5 min	GPS+GAL	- Variometric
T-3	Huawei P10		Gesture	Embedded	5 min	GPS+GAL	- Variometric
T-4			Vehicle sub-urban	Embedded	5 min 3 sessions	GPS+GAL	 Carrier Phase Differential (Kinematic), Baseline~4Km Variometric
T-5	Samsung S8		Aircraft	Embedded	1 hr	GPS+GAL	- Variometric

T-1 scenario Huawei P10 2D accuracy in live Carrier-Phase static scenario

Ref.	Device	Scenario	Туре	Antenna	Duration	GNSS available	Algorithm
T-1			Static	Embedded	5 min	GPS+GAL	- Carrier Phase Differential (Static), Baseline~5Km - Variometric
T-2			Pedestrian	Embedded	5 min	GPS+GAL	- Variometric
T-3	Huawei P10	Live	Gesture	Embedded	5 min	GPS+GAL	- Variometric
T-4			Vehicle sub-urban	Embedded	5 min 3 sessions	GPS+GAL	 Carrier Phase Differential (Kinematic), Baseline~4Km Variometric
T-5	Samsung S8		Aircraft	Embedded	1 hr	GPS+GAL	- Variometric

T-1 scenario Huawei P10 2D accuracy in live Carrier-Phase static scenario

The Variometric Approach Idea

The approach is based on time single differences of carrier phase observations:

- continuously collected at high rate (1 Hz or higher);
- using a standalone GNSS receiver;
- using standard GNSS broadcast products (orbits and clocks) available in real-time;
- Single and double frequency observations.

The approach is implemented in VADASE software, developed and patented by Sapienza University of Rome

Variometric Approach for Displacement Analysis Stand-Alone Engine (VADASE)

The Model

- Velocity Estimation
 - Epoch-by-Epoch LSQ velocity estimation, high-rate data
- Waveform or Displacement determination
 - Integration of estimated velocities, leads to high-rate site motion waveform and displacements

Outputs

- The direct outputs of the VADASE are velocities
 - Few centimeters displacements accuracy level in real-time (over short periods)

Since September 2015, on-board Leica Geosystems GNSS receivers

VADASE simplified functional model

Simplified GPS L1 + Galileo E1 functional model

$$\underbrace{[\lambda\Delta\Phi^s_r]_{L1}}_{\text{time single difference observation}} = \underbrace{[\Delta\rho^s_r]_{OR} - c\Delta\delta t^s + \Delta T^s_r + \Delta I^s_r}_{\text{known term}}$$

+
$$(\mathbf{e}_r^s \bullet \Delta \xi_r + c\Delta \delta t_r)$$
 + ϵ_r^s terms containing the 4 unknown parameters noise

- All GPS and Galileo equations are stacked
- $ightharpoonup \Delta T_r^s$ and ΔI_r^s variations are computed by Saastamoinen and Klobuchar models for both systems
- ▶ a single $\Delta \delta t_r$ unknown is estimated for both systems (the receiver clock variations, in short intervals, can be assumed equal)

T-1 scenario Huawei P10 and static displacements with VADASE Carrier Phase only – L1

min

T-2 scenario Huawei P10 and pedestrian displacements with VADASE kinematic

Ref.	Device	Scenario	Туре	Antenna	Duration	GNSS available	Algorithm
T-1			Static	Embedded	5 min	GPS+GAL	Carrier PhaseDifferential (Static),Baseline~5KmVariometric
T-2			Pedestrian	Embedded	5 min	GPS+GAL	- Variometric
T-3	Huawei P10	Live	Gesture	Embedded	5 min	GPS+GAL	- Variometric
T-4			Vehicle sub-urban	Embedded	5 min 3 sessions	GPS+GAL	 Carrier Phase Differential (Kinematic), Baseline~4Km Variometric
T-5	Samsung S8		Aircraft	Embedded	1 hr	GPS+GAL	- Variometric

T-2 scenario Huawei P10 and pedestrian displacements with VADASE kinematic Carrier Phase only – L1

T-3 scenario Huawei P10 and gestures with VADASE kinematic

Ref.	Device	Scenario	Туре	Antenna	Duration	GNSS available	Algorithm
T-1			Static	Embedded	5 min	GPS+GAL	Carrier PhaseDifferential (Static),Baseline~5KmVariometric
T-2			Pedestrian	Embedded	5 min	GPS+GAL	- Variometric
T-3	Huawei P10) Live	Gesture	Embedded	5 min	GPS+GAL	- Variometric
T-4			Vehicle sub-urban	Embedded	5 min 3 sessions	GPS+GAL	 Carrier Phase Differential (Kinematic), Baseline~4Km Variometric
T-5	Samsung S8		Aircraft	Embedded	1 hr	GPS+GAL	- Variometric

T-3 scenario Huawei P10 and gestures with VADASE kinematic Carrier Phase only – L1

Smartphone displacements Carrier Phase Only – L1

T-4 scenario <u>Huawei P10 in live vehicle sub-urban</u> scenario

Ref.	Device	Scenario	Туре	Antenna	Duration	GNSS available	Algorithm
T-1	_		Static	Embedded	5 min	GPS+GAL	Carrier PhaseDifferential (Static),Baseline~5KmVariometric
T-2			Pedestrian	Embedded	5 min	GPS+GAL	- Variometric
T-3	Huawei P10	Live	Gesture	Embedded	5 min	GPS+GAL	- Variometric
T-4			Vehicle sub-urban	Embedded	5 min 3 sessions	GPS+GAL	 Carrier Phase Differential (Kinematic), Baseline~4Km Variometric
T-5	Samsung S8		Aircraft	Embedded	1 hr	GPS+GAL	- Variometric

T-4 scenario <u>Huawei P10 in live vehicle sub-urban</u> scenario

T-4 scenario Huawei P10 in live vehicle sub-urban scenario Carrier-phase Kinematic – L1

T-4 scenario Huawei P10 in live vehicle sub-urban scenario LEICA vs Smartphone internal solution (from NMEA)

T-4 scenario Huawei P10 in live vehicle sub-urban scenario **LEICA vs Smartphone Carrier-phase Kinematic – L1**

T-4 scenario Huawei P10 in live vehicle sub-urban scenario LEICA vs VADASE-carrier-phase only-GPS (L1)

Ground Track

Performance (includes the fixed distance btw antennas)

Ref.	Device	Scenario	Туре	Antenna	Duration	GNSS available	Algorithm
T-1			Static	Embedded	5 min	GPS+GAL	Carrier PhaseDifferential (Static),Baseline~5KmVariometric
T-2		wei P10 Live	Pedestrian	Embedded	5 min	GPS+GAL	- Variometric
T-3	Huawei P10		Gesture	Embedded	5 min	GPS+GAL	- Variometric
T-4			Vehicle sub-urban	Embedded	5 min 3 sessions	GPS+GAL	 Carrier Phase Differential (Kinematic), Baseline~4Km Variometric
T-5	Samsung S8		Aircraft	Embedded	1 hr	GPS+GAL	- Variometric

Experiment developed during M.Sc Thesis by Eng. E. Fornaciari Defended on 29 May 2018

Snapshot of the app MentorAge GNSS RINEX acquisition + Variometric approach live implementation

Conclusions

- The preliminary results with the Variometric approach are very promising.
- Reliable solutions can be obtained when the User can:
 - Select the type of GNSS;
 - Disable/enable the duty-cycle of the power;
 - Access to data estimated with a good clock.
- The use of raw measurements from smartphone opens the way to new interesting applications:
 - IOT and LBS;
 - Two ore more smartphones connected together;
 - Gesture and images or video correlated (Virtual or Augmented Reality).

