GNSS Positioning capability of Android based Smartphones: A Study

Somnath Mahato, Atanu Santra, Sukabya Dan, Partha Rakshit and Anindya Bose

GNSS Laboratory, Department of Physics
The University of Burdwan,
Burdwan, INDIA

Email: abose@phys.buruniv.ac.in
Website: http://bugnss.in

Fourth annual GNSS Raw Measurements Taskforce Workshop
Online, 27-28 May 2020

GNSS Laboratory, The University of Burdwan, INDIA
Contents

- Android based Cellular phones with GNSS: potential as low-cost geolocation Tools in geospatial applications
- Android Apps with various levels of capabilities
- NMEA data quality of common Cellular phones
- GNSS raw data – indoor and outdoor solution quality- How this can help in the geospatial user community
- Applications and Future Scopes
• Android based Cellular Mobile phones with GNSS sensors can be used for geolocation
• Can show instantaneous location and satellite information – snapshot location, fun, basic knowledge about GNSS
• NMEA data can be recorded
 • Can be used for location information collection at low cost within limited accuracy
 • Can be used by geospatial user community
 • Can be used GNSS researchers for basic information
 • Low cost geolocation sensors for crowdsourced data collection real-time
• Raw data can be collected
 • Can be used by GNSS research community.
 • Use by the geospatial community would enhance the userbase
 • For low-cost crowdsourced data collection to create robust GNSS environment related database
• Enhancement of userbase and crowdsourcing needs sensitization, confidence on solution quality for the users, and ease of use
In this presentation, common/ mass-market, single frequency, low-cost (<120 Euros) Android phones are used to compare solution performances
- from direct NMEA output data
- from GNSS raw measurements

The aim is to enhance the confidence among common geospatial user community to use Android based handhelds (Cellular phones, to be more precise) for training, small projects: Enhanced userbase of available GNSS/ GNSS raw data
Android based Apps to collect GNSS data
(Examples: Non-exhaustive)

LEVEL I: Can show the satellite information and Instantaneous position solution

LEVEL II: Can record NMEA data for post processing

An example using my phone data collected through the Window of my flight to Bangaluru,
App: NMEA Tool

GNSS Laboratory, The University of Burdwan, INDIA
Android based Apps to collect GNSS data (Examples: Non-exhaustive)

LEVEL III: Can collect GNSS raw measurement for postprocessing

- GNSS Compare
- Geo++ RINEX Logger
- rinex ON
- GnssLogger
- GNSS data recorder

LEVEL IV: Can be used for RTK on the Mobile and enhanced location quality

- RTK GPS+
- Lefebure NTRIP Client
Performance comparison of NMEA data from the Cellular Phones

10 single frequency, mass-market phones from 6 manufacturers are used under open-sky, Network support- OFF

GLB-GSOL software (Windows)

GNSS Laboratory, The University of Burdwan, INDIA
GNSS solution accuracy obtained from smartphones without network support
(Cellular network “off”, 30 min data); 06 July 2019* and 8 August 2019#

<table>
<thead>
<tr>
<th>Make- Model (Android Version)</th>
<th>Mode</th>
<th>Maximum Variation (m)</th>
<th></th>
<th>2DRMS (m)</th>
<th>CEP (m)</th>
<th>SEP (m)</th>
<th>MRSE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Latitude</td>
<td>Longitude</td>
<td>Altitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiaomi - NOTE 5* (9.0)</td>
<td>GPS+GAL + GLO</td>
<td>0.315</td>
<td>0.102</td>
<td>4.400</td>
<td>0.152</td>
<td>0.060</td>
<td>0.447</td>
</tr>
<tr>
<td>Xiaomi-A2* (9.0)</td>
<td>GPS+GAL + GLO</td>
<td>0.591</td>
<td>0.505</td>
<td>1.400</td>
<td>0.454</td>
<td>0.190</td>
<td>0.378</td>
</tr>
<tr>
<td>Xiaomi- NOTE 4* (7.0)</td>
<td>GPS+ GLO</td>
<td>3.467</td>
<td>4.663</td>
<td>9.000</td>
<td>1.481</td>
<td>0.619</td>
<td>1.309</td>
</tr>
<tr>
<td>VIVO-1601* (6.0)</td>
<td>GPS+ GLO</td>
<td>1.111</td>
<td>6.807</td>
<td>8.900</td>
<td>1.019</td>
<td>0.326</td>
<td>0.579</td>
</tr>
<tr>
<td>Xiaomi-NOTE 7# (9.0)</td>
<td>GPS+GLO+ GAL</td>
<td>0.8482</td>
<td>0.7539</td>
<td>0.2000</td>
<td>0.6328</td>
<td>0.2637</td>
<td>0.2678</td>
</tr>
<tr>
<td>Xiaomi-5A# (7.1)</td>
<td>GPS+GLO</td>
<td>1.4760</td>
<td>0.8866</td>
<td>1.0000</td>
<td>0.9222</td>
<td>0.3813</td>
<td>0.4950</td>
</tr>
<tr>
<td>Samsung-J600G# (9.0)</td>
<td>GPS+BDS+ QZSS+ GLO</td>
<td>0.9371</td>
<td>0.8730</td>
<td>0.2000</td>
<td>0.8092</td>
<td>0.3379</td>
<td>0.3359</td>
</tr>
<tr>
<td>Asus -Z010D# (6.0)</td>
<td>GPS+BDS</td>
<td>1.3760</td>
<td>0.8594</td>
<td>2.00</td>
<td>1.0019</td>
<td>0.4130</td>
<td>0.6346</td>
</tr>
</tbody>
</table>

* HTC Desire, Android 4.4.4 shows no variation

GNSS Laboratory, The University of Burdwan, INDIA
Performance comparison of NMEA data from the Cellular Phons

- For 5 phones from 3 manufacturers with Android version 9.0, 4 provides modest precision varying between less than 4 meters to sub-meter.
- Provides Satellite geometry information and signal strength values for the interested users.
- Shows the potentials and advantages of convenient and cost-effective use of the smartphones for collection of position data.
- Users do not need to incur any cost for the hardware and free or low-cost Android App are easily available for data collection.
- This may support the geospatial community and use of multiple devices for concurrent data collection.
- Collected data can be sent over the network for remote processing.
- Selection of smartphone (Make, Model) and the Android version is important.
Comparison of solution: NMEA and raw data

- GNSS NMEA data and raw data are collected in Indoor and Outdoor (Open sky) environments
- Network Location support -> ON

Xiaomi Note 5 Pro
(Android 9.0)

GLB-GSOL

GNSS Laboratory, The University of Burdwan, INDIA
Comparison of solution: NMEA and raw data

Comparison of precision level of GNSS solution obtained using Android apps ‘NMEA Tools’ and ‘GNSS Logger’

Static; Device used: Xiaomi MI Note 5 Pro with Android version 9.0

<table>
<thead>
<tr>
<th>App Name and Environment</th>
<th>Maximum Variation (m) in Lat.</th>
<th>Maximum Variation (m) in Long.</th>
<th>Maximum Variation (m) in Alt.</th>
<th>2DRMS (m)</th>
<th>CEP (m)</th>
<th>SEP (m)</th>
<th>MRSE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMEA Tools</td>
<td>Indooرس</td>
<td>5.2875</td>
<td>15.8087</td>
<td>15.700</td>
<td>3.862</td>
<td>1.751</td>
<td>2.891</td>
</tr>
<tr>
<td>GNSS Logger with GNSS Analysis</td>
<td>Indoor</td>
<td>19.753</td>
<td>11.398</td>
<td>47.000</td>
<td>8.335</td>
<td>3.473</td>
<td>6.997</td>
</tr>
<tr>
<td>NMEA Tools</td>
<td>Outdoor (Open Sky)</td>
<td>3.799</td>
<td>2.614</td>
<td>5.500</td>
<td>2.189</td>
<td>0.906</td>
<td>1.543</td>
</tr>
<tr>
<td>GNSS Logger with GNSS Analysis</td>
<td>Outdoor</td>
<td>10.929</td>
<td>19.267</td>
<td>31.000</td>
<td>7.851</td>
<td>3.023</td>
<td>5.726</td>
</tr>
</tbody>
</table>

GNSS Laboratory, The University of Burdwan, INDIA
2DRMS value for the outdoor environment remain around 2m and for the indoor environment within 4m. For the raw data, the 2DRMS values are less than 10m for both the cases,

Outdoor environment provides slightly better solution quality.

3-dimensional precision in terms of CEP also follow similar trend.

The better solution quality for NMEA data may be attributed to the preloaded almanac and AGPS in case of NMEA Tools Pro, generally helping in improved solution.

The other parameters obtained from the raw data would be useful for GNSS researchers including understanding the GNSS use environment.
Level V Android based Apps to collect GNSS NMEA data over Bluetooth or USB

- Compact GNSS modules can be connected to the Cellular phones using Bluetooth or USB for NMEA/raw data collection
- Low-cost solution using the multi-GNSS GNSS modules for location data collection
- Data can be sent from the field using cellular network
- Ideal for Geospatial applications

GNSS Laboratory, The University of Burdwan, INDIA
Applications and Future Scopes

Application Areas:
- Geospatial students and researchers
- Common people interested to get continuous location data
- Geolocation in case of Emergency; COVID19 situation management may be an example

Future Scopes:
- Training on use of GNSS NMEA data and raw data
- GNSS Analysis version 3.03.0 and 4.0.0.0, when released
- Trials with Android 10 and 11
- Trials with dual frequency phones (Xiaomi K20 Pro/ M8)
- Using NavIC-enabled smartphones (Announced Q2 2020, delayed)

- Would enhance GNSS userbase,
- Would enhance GNSS raw measurement users – from research to real-life applications
- Would help in understanding Galileo differentiators

- Standardization of Apps and Devices

GNSS Laboratory, The University of Burdwan, INDIA
Typical skyplot for Western India
(23 June, 2019: 18:11 hrs IST)
54 satellites in view, 45 used
GNSS receiver screenshot

Simulated Multi-GNSS visibility
prediction
(Multi-GNSS Asia- MGA)

Typical skyplot for Eastern India
(04 March, 2019: 15:00 hrs IST)
54 satellites in view
GNSS receiver screenshot

GNSS Laboratory, The University of Burdwan, INDIA