Standardization of GNSS Threat reporting and Receiver testing through International Knowledge Exchange, Experimentation and Exploitation

Michael Pattinson

European Global Navigation Satellite Systems Agency
GNSS Benefits

• Freely available signals, 24/7, all weather
• Position, precise timing
• Used in wide range of domains and industries
 – Consumer
 – Commercial
 – Safety
 – Security
 – Transactions
 – Liability
 – Governmental
GNSS Limitations

• Weak signals
 – Difficult to track indoors and in obstructed areas
 – Susceptible to interference
Radio Frequency Interference

• Unintentional
 – Mis-tuned or faulty equipment, Space Weather

• Intentional
 – Jamming, Spoofing, Meaconing

• Impacts of Interference
 – Receiver
 • Degraded solution
 • No solution (position, timing)
 – Services
 • Small nuisance
 • Economic impact
 • Safety impact
Counter Measures

- Legislation (Supply, Possession, Use)
- Education
- Enforcement
 - Detect and remove
 - Direct or indirect
- Equipment
 - Antenna
 - Receiver
 - Hybridisation
- Procedure/process
Counter Measures

- Legislation (Supply, Possession, Use)
- Education
- Enforcement
 - Detect and remove
 - Direct or indirect
- Equipment
 - Antenna
 - Receiver
 - Hybridisation
- Procedure/process

All dependent on understanding the threat
Understanding the Threat

• Interference Monitoring and Reporting
 – What threats are out there?
 – Focus on jamming (STRIKE3)

• Receiver Response to Threats
 – Are we protected?
 – If not, how can we improve?
State of the Art

• Previous studies
 – DETECTOR, SENTINEL, PROTECTOR, etc.

• Existing systems
 – GSS100D Detector
 – Signal Sentry 1000
 – N6841A RF Sensor

• Why STRIKE3?
STRIKE3 Rationale 1

- Site 1
 - 1436 events
 - 37 Chirp

- Site 2
 - 250 events
 - 11 chirp (different signatures)

- To monitor single site – one sensor
- To understand wider threat environment – monitoring network required (regulators, government, users)
Monitoring network deployment
- Limited if deploy own network with single type of sensor
- Larger network and more data if allow reports from different systems
- Are results compatible?
• Monitoring useful – understand the threat environment

• So what? - Countermeasures
 – Legislation (Supply, Possession, Use)
 – Education
 – Enforcement
 • Detect and remove
 • Direct or indirect
 – Equipment
 • Antenna
 • Receiver
 • Hybridisation
 – Procedure/process
STRIKE3 and Interference Monitoring

- Development of Reporting Standard for Interference Events
 - Consistency of reporting
 - System independent
 - Help creation of networks and threat database

- Implement reporting standards
 - Modify existing systems
 - Testing, validation of standards
STRIKE3 and Interference Monitoring

• Deploy international network of sensors
 – Range of countries and types of site
 – Populate database:
 • Analysis and understanding of threat
 • Threat signatures / types of threat
STRIKE3 and Receiver Testing

• Development of Testing Standard
 – Check receiver resilience against threats
 • Based on identified threats (from database)
 – Consistent approach to testing and analysis
 – Receiver independent
STRIKE3 and Receiver Testing

• Validation of Testing Standard
 – Test different receivers and algorithms
 – Response to real events
 – Test against emerging threats
 – Improved mitigation

1st June 2016, ENC2016, Helsinki
STRIKE3 Current Status

• KO Feb 2016

• Current activities
 – State of the art review
 • Stakeholders, existing systems, previous projects, current work on standardisation, etc.
 – International threat collection exercise
 • 10 sensors deployed in 5 countries
 – Building up data base of events
 • More deployments planned in coming months

1st June 2016, ENC2016, Helsinki
STRIKE3 Current Sensor Network

• Countries
 – UK, Sweden, Poland, Slovakia, Czech Republic, Finland, India

• Types of site
 – Environment (city, suburban, motorway)
 – Site use (CORS, timing, power grid, airport)

• Types of Sensor
 – Detector (NSL), RF Oculus (FOI), GEMNet (SAC)
 – Some co-location to compare results
STRIKE3 Initial Results

• Variation in activity between sites
 – < 5 events per day, low power
 – 100+ events per day, many different signals

• Different sensors detect same events
 – Compare results

• Impact on GNSS
 – Many events no impact
 – GNSS tracking can be affected – signal power and type
STRIKE3 Future Activities

• Analysis of threat collection results
• Development of draft Standards (Jan 2017)
• Implement reporting Standards and develop test environment (Oct 2017)
• Long term threat Monitoring and Receiver Testing (2018)

• www.gnss-strike3.eu – coming soon!
Thank You for Your Attention!

The work presented in this paper has been co-funded under the H2020 programme through the European GNSS Agency (GSA)